

SQUARE 1400 APARTMENTS

Fairfax, VA

NN STATE AE SENIOR CAPSTONE PROJEC ANTHONY GRAB | CONSTRUCTION MANAGEMENT RAYMOND SOWERS - CM ADVISOR

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- II. ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - I. INTERVIEW OUTCOMES
 - II. How the Infinity System Works
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - I. ABOUT THE FAÇADES
 - II. STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - I. Implementation
 - II. RESULTS/RECOMMENDATIONS
- V. OPERATIONS AND MAINTENANCE
 - I. BUILDING COMPATIBILITY
 - II. CONCLUSION AND RECOMMENDATIONS
- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

SQUARE 1400 APARTMENTS

Fairfax, VA

PENN STATE AE SENIOR CAPSTONE PROJECT ANTHONY GRAB | CONSTRUCTION MANAGEMENT RAYMOND SOWERS- CM ADVISOR

PROJECT BACKGROUND

ANALYSIS 1: CHANGE IN CAST-IN-PLACE

ANALYSIS 2: FAÇADE RE-DESIGN

ANALYSIS 3: SIPS

ANALYSIS 4: OPERATIONS AND MAINTENANCE

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- **PROJECT BACKGROUND**
- **ANALYSIS 1: CHANGE IN CAST-IN-PLACE**
 - INTERVIEW OUTCOMES
 - How THE INFINITY SYSTEM WORKS
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - Implementation
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

IMAGE COURTESY OF HITT CONTRACTING

LOCATION:

PROJECT PARAMETERS:

PROJECT BACKGROUND

Fairfax, VA

• 2700 DORR AVE, FAIRFAX, VA • HOME OF THE PREVIOUS HITT HEADQUARTERS

BUILDING PARAMATERS:

• 327,431 SF GROSS BUILDING AREA • 11 STORY APARTMENT BUILDING/4 STORY PARKING GARAGE

\$40 MILLION • TOTAL PROJECT COST: **JANUARY 2012 – OCTOBER 2013** • DATES OF CONSTRUCTION: • DELIVERY METHOD: DESIGN-BID-BUILD • LEED CERTIFICATION: SILVER

IMAGES COURTESY OF GOOGLE MAPS

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - INTERVIEW OUTCOMES
 - How the Infinity System Works
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - IMPLEMENTATION
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - CONCLUSION AND

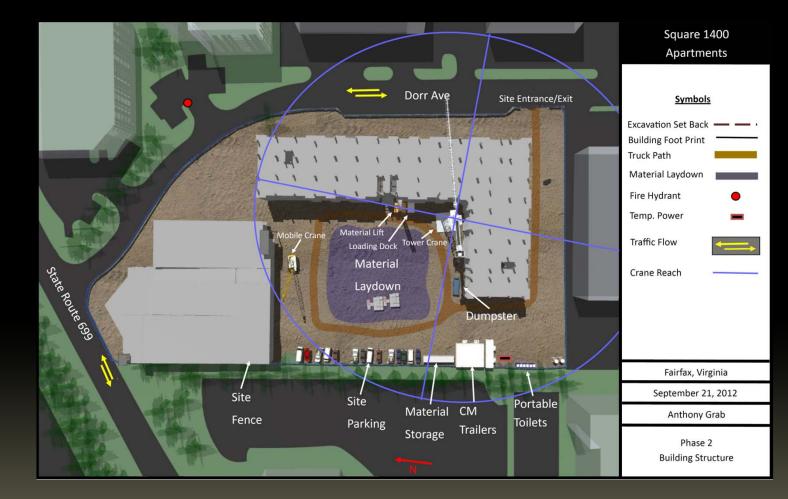
Recommendations

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

IMAGE DEVELOPED BY ANTHONY GRAB

- MULTI COLOR STYLE BRICK WITH LIGHT GAGE STUDS ROOF – PARAPET WALL WITH 6" INSULATION

CONSTRUCTION LOGISTICS:


- PHASE ONE:

PROJECT BACKGROUND

STRUCTURAL SYSTEM:

- CAST-IN-PLACE CONCRETE WITH POST TENSION CABLES • 30,000 SF PER FLOOR • 5 POURS PER FLOOR
- **BUILDING ENCLOSURE:**

DEMO EXISTING STRUCTURES, UTILITY RELOCATION PHASE TWO: **EXCAVATION, BUILDING STRUCTURE** • PHASE THREE: **BUILDING EXTERIOR FAÇADE**

SQUARE 1400

IMAGE DEVELOPED BY ANTHONY GRAB

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

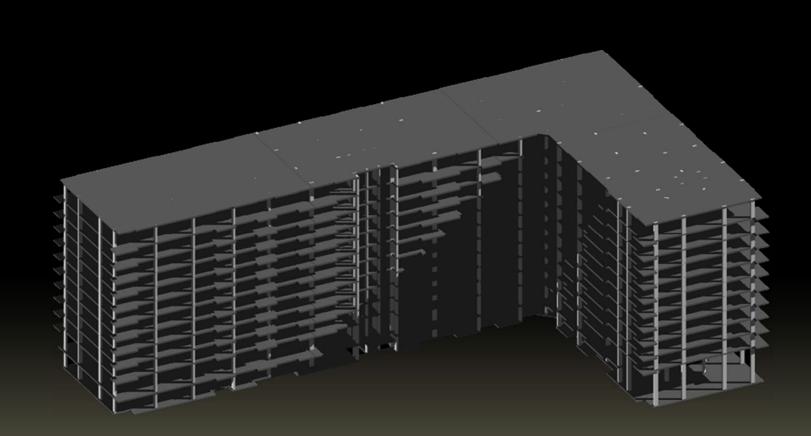
- PROJECT BACKGROUND
- **ANALYSIS 1: CHANGE IN CAST-IN-PLACE**
 - INTERVIEW OUTCOMES
 - How THE INFINITY SYSTEM WORKS
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - ABOUT THE FACADES
 - II. STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - Implementation
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - II. CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

IMAGE TAKEN BY ANTHONY GRAB

RESEARCH GOAL:


PROBLEM IDENTIFICATION:

• HIGH LEVEL OF DETAIL CAST-IN-PLACE STRUCTURE • IMPACTS ON CRITICAL PATH SCHEDULE • REQUIRE A LARGE AMOUNT OF MAN POWER

• INVESTIGATE ALTERNATIVE STRUCTURE SYSTEM • Assess changes in strategies for constructing the new system

INDUSTRY MEMBER INTERVIEWS:

 RAYMOND SOWERSPENN STATE OPP • BRIAN ABELABLE CONSULTING ENGINEERS • BILL HOLLEY......INFINITY STRUCTURES

APARTMENTS

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE

INTERVIEW OUTCOMES

- How the Infinity System Works
- III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - II. STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - Implementation
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - II. CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

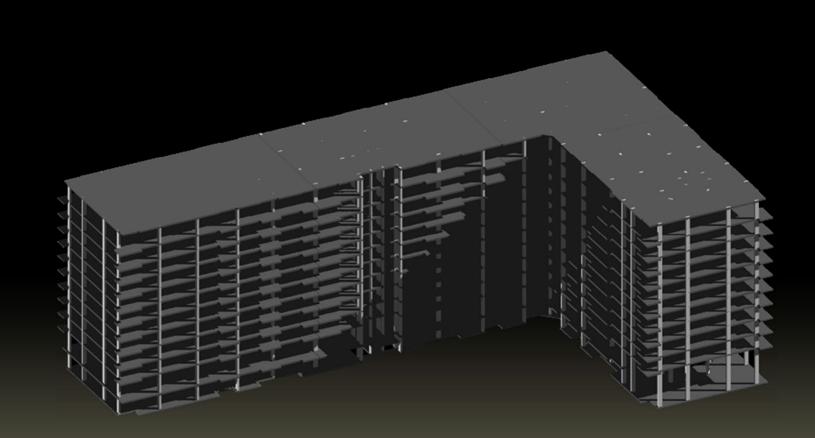


IMAGE COURTESY OF WWW.INFINITYSTRUCTURES.COM

- Design Layout
- COST AND DURATION
- BENEFITS OF THE INFINITY SYSTEM
- DOWNFALLS OF CAST-IN-PLACE CONCRETE
- MANUFACTURING OF INFINITY SYSTEM PANELS

ISSUES DISCUSSED IN INTERVIEWS:

- FACTORS INFLUENCING SHIFTS IN STRATEGY
- CONSTRUCTABILITY AND LIMITATIONS

APARTMENTS

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - INTERVIEW OUTCOMES
 - How THE INFINITY SYSTEM WORKS
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - II. STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - Implementation
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - II. CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

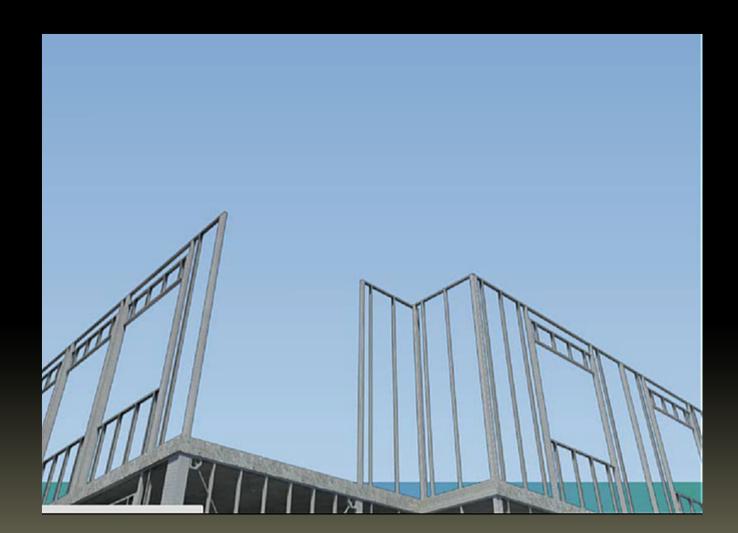


IMAGE COURTESY OF WWW.INFINITYSTRUCTURES.COM

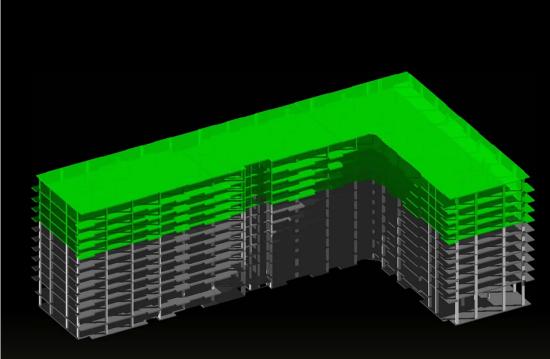
ANTHONY GRAB | CONSTRUCTION MANAGEMENT

How THE INFINITY SYSTEM WORKS

• EPICORE MSR COMPOSITE FLOOR WITH WWF • PANELIZED LOAD-BEARING METAL STUDS • SPANS UP TO 27 FEET • 4" TO 8" SLAB THICKNESS • 4,000 PSI REGULAR WEIGHT CONCRETE

SQUARE 1400 APARTMENTS FAIRFAX, VA

ANTHONY GRAB | CONSTRUCTION MANAGEMENT


PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- **ANALYSIS 1: CHANGE IN CAST-IN-PLACE**
 - INTERVIEW OUTCOMES
 - How THE INFINITY SYSTEM WORKS
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - Implementation
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

Model Produced by Anthony Grab

INFINITY SYSTEM:

CAST-IN-PLACE CONCRETE

APARTMENTS Fairfax, VA

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

ADVANTAGES

• ABOUT 1 WEEK PER FLOOR TO CONSTRUCT • ECONOMICAL TRADITIONALLY LOW COST THAN CAST-IN-PLACE • QUALITY CONTROL IN FACTORY ENVIRONMENT UNIFORM LOAD

 CAN BUILD MANY STORIES • MORE FREEDOM WITH FLOOR PLAN DESIGN **INFINITY SYSTEM :**

- DIFFICULT TO COME BACK A REDESIGN FLOORS
- LIMITED TO 5 STORIES

CAST-IN-PLACE CONCRETE

- ABOUT 2 WEEKS PER FLOOR TO CONSTRUCT
- Cost

SQUARE 1400

DISADVANTAGES

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- **ANALYSIS 1: CHANGE IN CAST-IN-PLACE**
 - INTERVIEW OUTCOMES
 - How the Infinity System Works

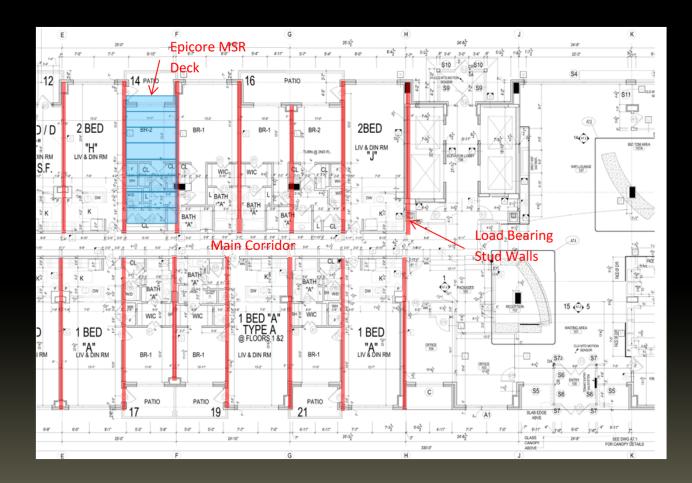
III. BREADTH 1 SYSTEM DESIGN

- **ANALYSIS 2: FAÇADE RE-DESIGN**
 - About the Facades
 - STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION

IV. ANALYSIS 3: SIPS

- IMPLEMENTATION
- **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - CONCLUSION AND

RECOMMENDATIONS


- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

Design Loads	
Rood Dead Loads	
Roof Dead Loads	5.0 PSF
Roofing	3.5 PSF
Sheathing/Insulation	3.5 PSF
Ceiling	4.0 PSF
Mech. & Misc.	5.0 PSF
Total	21 PSF
Rood Live Loads	
Total	25 PSF
Total	23 131
Floor Dead Loads	23 F 3F
	90 PSF
Floor Dead Loads	
Floor Dead Loads 8" Concrere Concrete Slab	90 PSF
Floor Dead Loads 8" Concrere Concrete Slab Ceiling	90 PSF 4.0 PSF
Floor Dead Loads 8" Concrere Concrete Slab Ceiling Mech./Electrical	90 PSF 4.0 PSF 3 PSF
Floor Dead Loads 8" Concrere Concrete Slab Ceiling Mech./Electrical Sprinklers	90 PSF 4.0 PSF 3 PSF 2.5 PSF
Floor Dead Loads 8" Concrere Concrete Slab Ceiling Mech./Electrical Sprinklers Misc.	90 PSF 4.0 PSF 3 PSF 2.5 PSF 2.5 PSF

- **EPICORE MSR 22 GAGE COMPOSITE DECK** •
- SIMPLE SPAN CONDITION
- CONCRETE STRENGTH 4,000 PSI
- LIVE LOAD 40 PSF •
- DEAD LOAD 20 PSF OF EPICORE MSR DECK
- **CONCRETE SLAB 8" THICK** •
- **DEFLECTION IS ACCOUNTED FOR WITHIN TABLE VALUES**
- NO REINFORCING IS REQUIRED FOR SIMPLE SPAN OTHER THAN EPICORE MSR
- 4T10 METAL STUDS TO BE USED

BREADTH 1 DESIGN OF THE INFINITY SYSTEM

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - INTERVIEW OUTCOMES
 - How the Infinity System Works

III. BREADTH 1 SYSTEM DESIGN

- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - II. STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - Implementation
 - **RESULTS/RECOMMENDATIONS**
- V. OPERATIONS AND MAINTENANCE
 - BUILDING COMPATIBILITY
 - II. CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

IMAGE COURTESY OF WWW.INFINITYSTRUCTURES.COM

CONCLUSION AND RECOMMENDATIONS:

- 42 Day Savings
- LIGHT WEIGHT
- LESS WEATHER SENSITIVE DURING CONSTRUCTION
- PREFABRICATED PANELS
- I WOULD HIGHLY RECOMMEND THE IMPLANTATION ON AN INFINITY
 - STRUCTURE SYSTEM

IMAGE COURTESY OF WWW.INFINITYSTRUCTURES.COM

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - INTERVIEW OUTCOMES
 - How THE INFINITY SYSTEM WORKS
 - III. BREADTH 1 SYSTEM DESIGN

ANALYSIS 2: FAÇADE RE-DESIGN III.

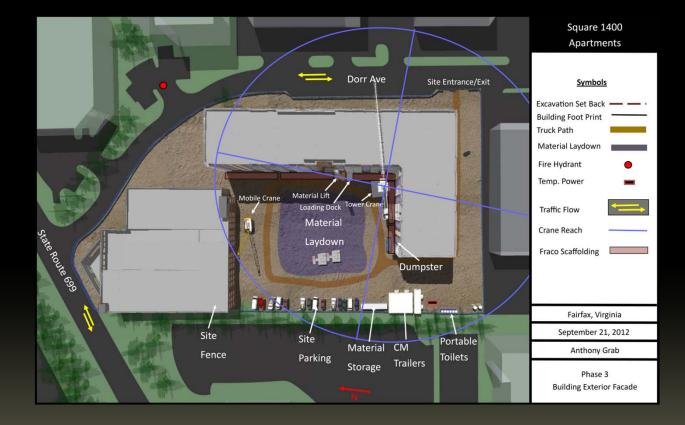
- About the Facades
- STRUCTURAL IMPACT
- III. COST IMPACT
- IV. BREADTH 2: THERMAL QUALITY
- V. CONCLUSION

IV. ANALYSIS 3: SIPS

- IMPLEMENTATION
- **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS


IMAGE COURTESY OF HITT CONTRACTING

RESEARCH GOAL:

PROBLEM IDENTIFICATION:

 SITE CONGESTION DUE TO CONCRETE AND MASONRY OVERLAP POTENTIAL DELAYS IN DRYING DEAD LINE • COMPLEXITY OF BRICK FAÇADE

• DETERMINE NEW TYPE OF EXTERIOR FACADE REDUCE SITE CONGESTION AND TRADE COORDINATION ON-SITE REDUCE SCHEDULE

SQUARE 1400

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- **ANALYSIS 1: CHANGE IN CAST-IN-PLACE**
 - INTERVIEW OUTCOMES
 - How the Infinity System Works
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Façades
 - STRUCTURAL IMPACT
 - III. Cost Impact
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - IMPLEMENTATION
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

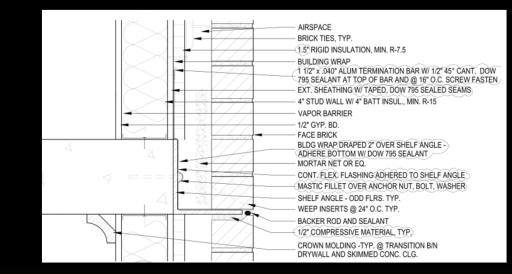


IMAGE COURTESY OF MEYER CONSULTING ENGINEERS

ORIGINAL FACADE:

- SUSTAINABLE

ANALYSIS 2: BRICK FAÇADE RE-DESIGN

APARTMENTS Fairfax, VA

• 4" BRICK ON METAL METAL STUD • \$7.4 MILLION MASONRY PACKAGE • 4.2 MONTH CONSTRUCTION DURATION

PROPOSED GFRC FACADE:

• PREFABRICATED PANELS • VARITY OF SIZES AND COLORS • IMPROVED SITE LOGISTICS

• No Structure Redesign

IMAGE COURTESY OF STROMBERG ARCHITECTURAL PRODUCTS

SQUARE 1400

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - INTERVIEW OUTCOMES
 - How THE INFINITY SYSTEM WORKS
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - IMPLEMENTATION
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

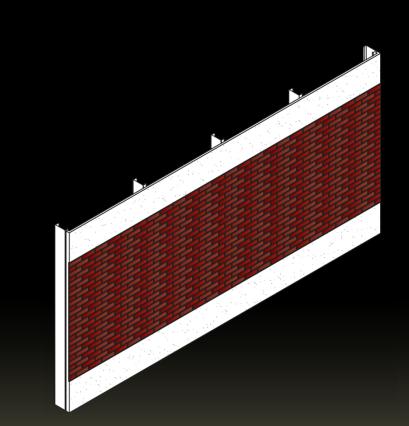


IMAGE COURTESY OF STROMBERG ARCHITECTURAL PRODUCTS

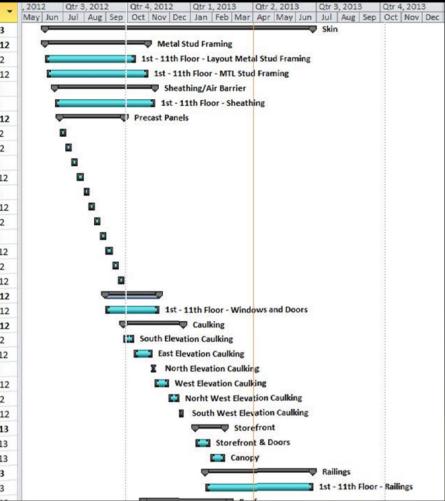
IMPACT ON PROJECT:

ANALYSIS 2: BRICK FAÇADE RE-DESIGN

SCHEDULE REDUCTION:

• ORIGINAL MASONRY FAÇADE DURATION = 126 DAYS • GFRC ERECTION = 6 DAYS/FLOOR GFRC FAÇADE DURATION = 67 DAYS

• NO OVERLAP OF CONCRETE AND FAÇADE TRADES • FAÇADE IS ON CRITICAL PATH – POTENTIAL 59 DAYS SAVINGS


Façade Schedule Duration Comparison					
	Durations				
Standard Brick System	126				
GFRC System	67				
Difference (Days)	59				

	Task Name 👻	Duration ,	Start -	Finish
60	E Skin	276 days	Tue 6/5/12	Tue 6/25/13
61	Metal Stud Framing	106 days	Tue 6/5/12	Tue 10/30/1
62	1st - 11th Floor - Layout Metal Stud Framin,	94 days	Tue 6/5/12	Fri 10/12/12
63	1st - 11th Floor - MTL Stud Framing	104 days	Thu 6/7/12	Tue 10/30/1
64	Sheathing/Air Barrier	104 days	Tue 6/19/12	Fri 11/9/12
65	1st - 11th Floor - Sheathing	104 days	Tue 6/19/12	Fri 11/9/12
66	Precast Panels	67 days	Tue 6/26/12	Wed 9/26/1
67	Install Precast Panels 1st Floor	7 days	Tue 6/26/12	Wed 7/4/12
68	Install Precast Panels 2nd Floor	7 days	Wed 7/4/12	Thu 7/12/12
69	Install Precast Panels 3rd Floor	7 days	Thu 7/12/12	Fri 7/20/12
70	Install Precast Panels 4th Floor	7 days	Fri 7/20/12	Mon 7/30/1
71	Install Precast Panels 5th Floor	7 days	Mon 7/30/12	Tue 8/7/12
72	Install Precast Panels 6th Floor	7 days	Tue 8/7/12	Wed 8/15/1
73	Install Precast Panels 7th Floor	7 days	Wed 8/15/12	Thu 8/23/12
74	Install Precast Panels 8th Floor	7 days	Thu 8/23/12	Fri 8/31/12
75	Install Precast Panels 9th Floor	7 days	Fri 8/31/12	Mon 9/10/1
76	Install Precast Panels 10th Floor	7 days	Mon 9/10/12	Tue 9/18/12
77	Install Precast Panels 11th Floor	7 days	Tue 9/18/12	Wed 9/26/1
78	Windows/Balcony Doors	55 days	Fri 8/31/12	Thu 11/15/1
79	1st - 11th Floor - Windows and Doors	55 days	Fri 8/31/12	Thu 11/15/1
80	Caulking	62 days	Wed 9/26/12	Thu 12/20/1
81	South Elevation Caulking	10 days	Wed 9/26/12	Tue 10/9/12
82	East Elevation Caulking	20 days	Tue 10/9/12	Mon 11/5/1
83	North Elevation Caulking	5 days	Mon 11/5/12	Fri 11/9/12
84	West Elevation Caulking	15 days	Fri 11/9/12	Thu 11/29/1
85	Norht West Elevation Caulking	12 days	Thu 11/29/12	Fri 12/14/12
86	South West Elevation Caulking	5 days	Fri 12/14/12	Thu 12/20/1
87	Storefront	30 days	Tue 1/8/13	Mon 2/18/1
88	Storefront & Doors	15 days	Tue 1/8/13	Mon 1/28/1
89	Canopy	15 days	Tue 1/29/13	Mon 2/18/1
90	Railings	111 days	Tue 1/22/13	Tue 6/25/13
91	1st - 11th Floor - Railings	111 days	Tue 1/22/13	Tue 6/25/13
	0 · · ·		and the deaders	an alante

Schedule Produced by Anthony Grab

SQUARE 1400

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - INTERVIEW OUTCOMES
 - How THE INFINITY SYSTEM WORKS
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - STRUCTURAL IMPACT
 - III. Cost Impact
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - Implementation
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

IMAGE COURTESY OF STROMBERG ARCHITECTURAL PRODUCTS

MATERIAL PRICING:

COST REDUCTION:

• \$45.00/sf Glass Fiber Reinforced Cladding • \$00.45/sf cost Fiberglass 3-1/2", R15 Insulation

• GFRC FAÇADE COSTS APPROXIMATELY 27% LESS THAN MASONRY • \$2,018,000.00 OVERALL SAVINGS FROM FAÇADE RE-DESIGN

GFRC Cost Estimate									
Item	Units	Quantity	ntity Unit Mat. Mat. Cost Unit Labor Labor Cost Unit Equip. Equip. Cost Tota						
GFRC Panel	sf	119600	\$45.00	\$ 5,382,000	-	-	-	-	\$ 5,382,000.00
fiberglass 3-1/2" , R15	sf	119600	0.48	\$ 57,408	-	-	-	-	\$ 57,408.00
								Total Cost	\$ 5,439,408.00

Cost Comparison of Façade Systems						
Item	Cost					
GFRC System	\$5,382,000.00					
Standard Brick System	\$7,400,000.00					
Difference in Cost	\$2,018,000.00					

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - INTERVIEW OUTCOMES
 - II. How the Infinity System Works
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - II. STRUCTURAL IMPACT
 - III. Cost Impact
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - Implementation
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE** V.
 - BUILDING COMPATIBILITY
 - II. CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

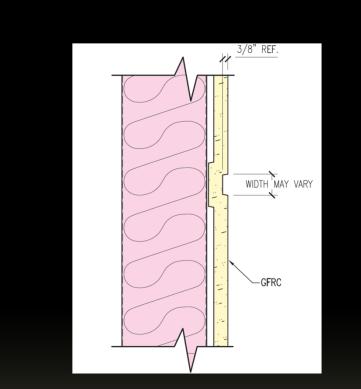
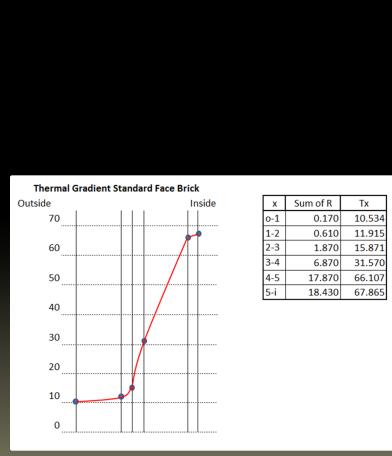
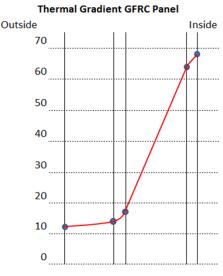



IMAGE COURTESY OF STROMBERG ARCHITECTURAL PRODUCTS

BREADTH 2: MECHANICAL – THERMAL QUALITY


Standar	Standard Face Brick Construction						
Wall U-	Value	Framing	Insulating				
RO	Outside	0.170	0.170				
R1	4" Face Brick	0.440	0.440				
R2	3/4" Air Space	1.260	1.260				
R3	1.5" Rigid Insulation Board	5.000	5.000				
R4	Metal Stud/3-5/8" Fiberglass batt	0.380	11.000				
R5	5/8" GWB	0.560	0.560				
Ri	Inside	0.680	0.680				
ΣR		8.490	19.110				
U		0.118	0.052				
%		0.150	0.850				
u		0.118	0.052				
% x U		0.018	0.044				
Uavg		0.	062				

ANALYSIS 2: BRICK FAÇADE RE-DESIGN

GFRC Pa	GFRC Panel						
Wall U-	Value	Framing	Insulating				
RO	Outside	0.170	0.170				
R1	1" Face Brick GFRC	0.070	0.070				
R2	3/4" Air Space	1.260	1.260				
R3	Metal Stud/3-5/8" Fiberglass batt	0.380	11.000				
R4	5/8" GWB	0.560	0.560				
Ri	Inside	0.680	0.680				
ΣR		3.120	13.740				
U		0.321	0.073				
%		0.150	0.850				
u		0.321	0.073				
% x U		0.048	0.062				
Uavg		0.	110				

x	Sum of R	Tx
o-1	0.170	10.742
1-2	0.240	11.048
2-3	1.500	16.550
3-4	12.500	64.585
4-i	13.060	67.031

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - INTERVIEW OUTCOMES
 - How THE INFINITY SYSTEM WORKS
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - Implementation
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

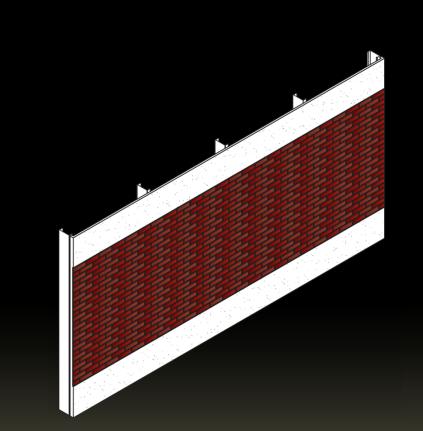


IMAGE COURTESY OF STROMBERG ARCHITECTURAL PRODUCTS

FINAL CONCLUSIONS

RECOMMENDATION:

• PURSUE GFRC FAÇADE BASED ON CONSTRUCTABILITY CONCERNS, COST AND SCHEDULE

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

 GFRC FAÇADE REDUCES SCHEDULE AND COST ELIMINATES SITE CONGESTION AND INEFFICIENCIES MINOR ARCHITECTURAL IMPLICATIONS

MET GOAL OF ANALYSIS TO REDUCE SITE CONGESTION ISSUES

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

ANALYSIS 3: IMPLEMENTATION OF SIPS

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - INTERVIEW OUTCOMES
 - How THE INFINITY SYSTEM WORKS
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - II. STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION

IV. ANALYSIS 3: SIPS

- Implementation
- **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

IMAGE TAKEN BY ANTONY GRAB

RESEARCH GOAL:

APARTMENTS Fairfax, VA

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PROBLEM IDENTIFICATION:

• COMPLEXITY OF CAST-IN-PLACE PT CONCRETE • 5 POURS PER FLOOR CREW MANAGEMENT

 STREAMLINE CAST-IN-PLACE ERECTION REDUCE SCHEDULE POTENTIAL COST SAVINGS

SQUARE 1400

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - INTERVIEW OUTCOMES
 - II. How the Infinity System Works
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - II. STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS

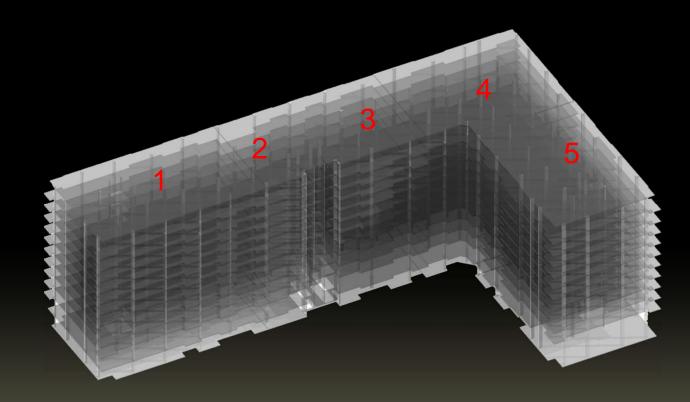
Implementation

- **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - II. CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

Task	Duration (Dyas)	Crew Size
Frame Pour	2	3
Install PT & Rebar	2	3
MEP Sleeves	1	2
Pour Slab	1	3
Concrete Cure	3	0
Stress PT	1	2
Strip & Reshore	3	3


IMPLEMENTATION:

- (8) 5-day work week

ANALYSIS 3: IMPLEMENTATION OF SIPS

SQUARE 1400 APARTMENTS Fairfax, VA

 TRADITIONAL SIPS SCHEDULE BETWEEN POURS WITH A FLOOR DISTANT WORK TASKS ONE FIXED CRANE LOCATION ESTABLISH CRITICAL DURATIONS

Model Produced by Anthony Grab

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - INTERVIEW OUTCOMES
 - II. How the Infinity System Works
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - II. STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - Implementation
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - II. CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

Color Code	Task	Duration (Days)	Crew Size
	Frame Pour	3	3
	Install PT & Rebar/Pour Slab	3	3
	MEP Sleeves	0	2
	Concrete Cure/Stress PT	3	2
	Strip & Reshore	3	3

RESULTS:

RECOMMENDATIONS:

ANALYSIS 3: IMPLEMENTATION OF SIPS

 Resequenced Work SAVED 11 DAYS SAVINGS FROM CRANE AND OTHER GENERAL CONDITIONS COSTS

• IT IS IN THE BEST INTEREST OF SQUARE 1400 TO UTILIZE SIPS FOR THE **ERECTION OF THE CAST-IN-PLACE STRUCTURE**

	Ma	rch	April								May						
AREA		28	2	5	8	12	15	18	21	24	27	30	3	6	9	12	15
Pour 1-1																	
Pour 1-2																	
Pour 1-3																	
Pour 1-4																	
Pour 1-5																	

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- **ANALYSIS 1: CHANGE IN CAST-IN-PLACE**
 - INTERVIEW OUTCOMES
 - How the Infinity System Works
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - STRUCTURAL IMPACT
 - III. Cost Impact
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - IMPLEMENTATION
 - **RESULTS/RECOMMENDATIONS**

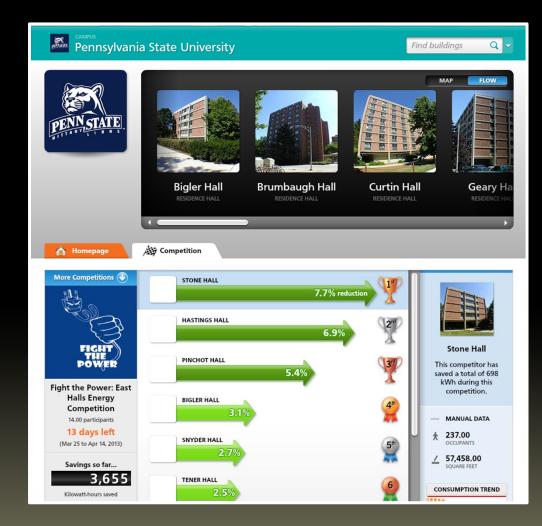
OPERATIONS AND MAINTENANCE V.

- BUILDING COMPATIBILITY
- CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

IMAGE COURTESY OF HTTP://GREENTECHADVOCATES.COM/


RESEARCH GOALS:

ANALYSIS 4: OPERATIONS AND MAINTENANCE

PROBLEM IDENTIFICATION:

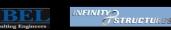
• COMPLEX/DIFFICULT TO OPERATE BUILDING SYSTEMS • HIGH DEMAND FOR INFORMATION RICH MODELS CHALLENGING TO MONITOR ENERGY WITHIN A BUILDING

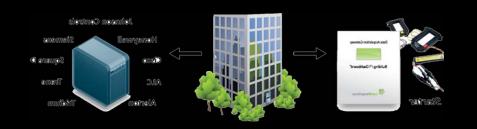
• THE IMPLANTATION OF A ENERGY SAVING DASHBOARD WILL RESULT IN **APARTMENT RESIDENTS USING LESS ENERGY**

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

IMAGE COURTESY OF PENN STATE UNIVERSITY

ANTHONY GRAB | CONSTRUCTION MANAGEMENT


PRESENTATION OUTLINE:


- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - INTERVIEW OUTCOMES
 - II. How the Infinity System Works
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - ABOUT THE FACADES
 - II. STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - Implementation
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

BUILDING COMPATIBILITY

- Cost and Payback:

ANALYSIS 4: OPERATIONS AND MAINTENANCE

ACS320 HVAC CONTROL

• 25 % PERCENT TOTAL BUILDING ENERGY SAVINGS

Organization	Duration	Savings	Top Reductions
Franklin & Marshall College	16 days	8,089 kWh	Top reducing residence hall: 17.3% (7 buildings participating)
St. Lawrence University	18 days	3,357 kWh	Top reducing residence hall: 20.2% (22 buildings participating)
University of Victoria	19 days	40,219 kWh	Top reducing residence hall: 56.4% (9 buildings participating)
Google NYC office	28 days	3,146 kWh	Top reducing floor: 30.4% (13 floors participating)
Agnes Scott College	7 days	8,899 kWh	Top reducing residence hall: 34.8% (5 buildings participating)
Phillips Academy at Andover v. Deerfield Academy	27 days	15,160 kWh	Top reducing residence hall: 45.4% (42 buildings participating)
Bowdoin College	30 days	16,893 kWh	Top reducing residence hall: 29.1% (21 buildings participating)
Elon University	49 days	231,454 kWh	Top reducing residence hall: 36.9% (41 buildings participating)
Bowdoin College	11 days	4,376 kWh	Top reducing residence hall: 17.2% (11 buildings participating)
St John's University	14 days	22,320 kWh	Top reducing residence hall: 15.8% (6 buildings participating)
Hamilton College	15 days	44,345 kWh	Top reducing residence hall: 40.9% (11 buildings participating)
Oberlin College	14 days	10,675 kWh	Top reducing residence hall: 42.5% (17 buildings participating)
Boston College	28 days	15,212 kWh	Top reducing residence hall: 9.1%

SQUARE 1400

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

ANALYSIS 4: OPERATIONS AND MAINTENANCE

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- **ANALYSIS 1: CHANGE IN CAST-IN-PLACE**
 - INTERVIEW OUTCOMES
 - How the Infinity System Works
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - STRUCTURAL IMPACT
 - III. Cost Impact
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - IMPLEMENTATION
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

IMAGE COURTESY OF LUCID

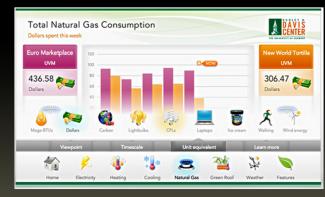


IMAGE COURTESY OF LUCID

- COMPETITIONS
- COMPARISONS
- GREEN FEATURES
- Renewables
- UNIT EQUIVALENTS

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

DASHBOARD INFORMATION

CONCLUSION AND RECOMMENDATIONS

 New Technology - Few Studies HARD TO JUSTIFY ITS IMPLEMENTATION • POTENTIAL LONG TERM SAVINGS

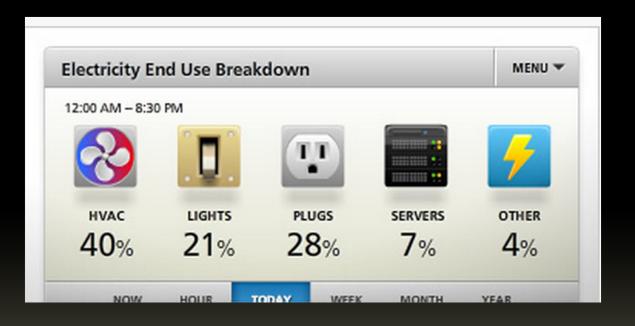


IMAGE COURTESY OF LUCID

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - INTERVIEW OUTCOMES
 - How THE INFINITY SYSTEM WORKS
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - II. STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - Implementation
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - CONCLUSION AND

RECOMMENDATIONS

VI. LESSONES LEARNED

VII. ACKNOWLEDGEMENTS

LESSONS LEARNED

SQUARE 1400 APARTMENTS Fairfax, VA

• AN INFINITY SYSTEM IS A GREAT SOLUTION TO REDUCE COST, DECREASE SCHEDULE DURATION, WHILE MAINTAINING A HIGH LEVEL OF QUALITY

• GFRC PANELS CAN BE COST AND TIME EFFECTIVE • PURSUE GFRC FAÇADE BASED ON CONSTRUCTABILITY CONCERNS • MET GOAL OF ANALYSIS TO REDUCE SITE CONGESTION ISSUES

• IT IS IN THE BEST INTEREST OF SQUARE 1400 TO UTILIZE SIPS FOR SCHEDULE IMPACTS

• HARD TO JUSTIFY ITS IMPLEMENTATION • POTENTIAL LONG TERM SAVINGS

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - INTERVIEW OUTCOMES
 - How the Infinity System Works
 - III. BREADTH 1 SYSTEM DESIGN
- III. ANALYSIS 2: FAÇADE RE-DESIGN
 - About the Facades
 - STRUCTURAL IMPACT
 - III. COST IMPACT
 - IV. BREADTH 2: THERMAL QUALITY
 - V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - Implementation
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE**
 - BUILDING COMPATIBILITY
 - CONCLUSION AND

RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS

ACADEMIC ACKNOWLEDGEMENTS:

PENN STATE AE FACULTY **RAYMOND SOWERS- CM ADVISOR**

ACKNOWLEDGEMENTS

SQUARE 1400 APARTMENTS Fairfax, VA

INDUSTRY ACKNOWLEDGEMENTS:

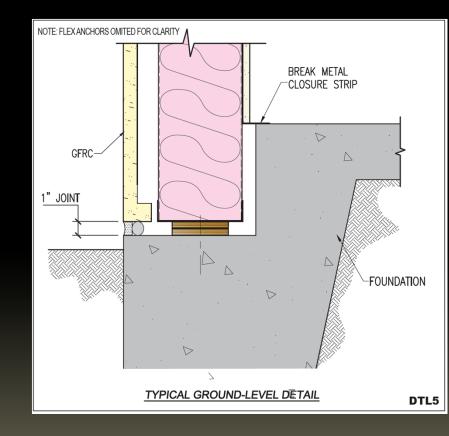
BRIAN ABEL PACE INDUSTRY MEMBERS

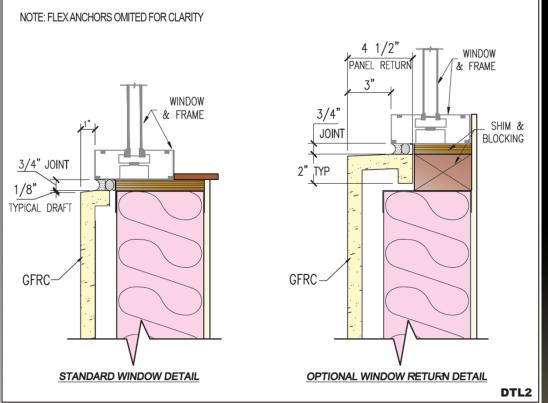
SPECIAL THANKS TO:

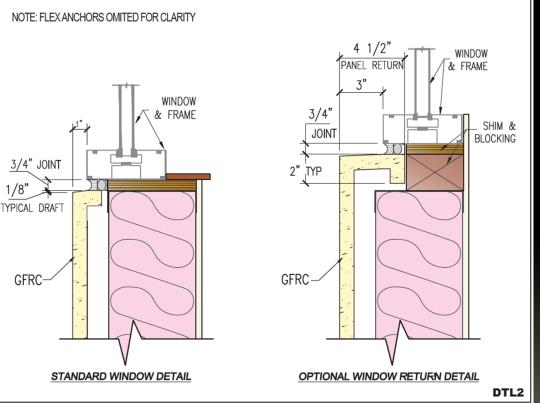
RANDY BARRETT AT HITT CONTRACTING HITT PROJECT TEAM My Family and Friends

PRESENTATION OUTLINE:

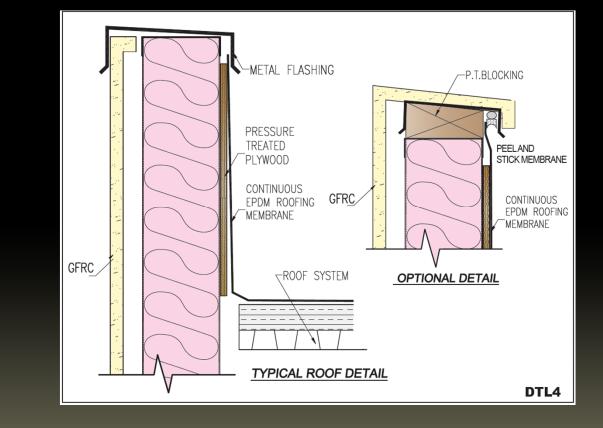
- PROJECT BACKGROUND
- ANALYSIS 1: CHANGE IN CAST-IN-PLACE
 - INTERVIEW OUTCOMES
 - How THE INFINITY SYSTEM WORKS
 - III. BREADTH 1 SYSTEM DESIGN


III. ANALYSIS 2: FAÇADE RE-DESIGN


- ABOUT THE FACADES
- II. STRUCTURAL IMPACT
- III. COST IMPACT
- IV. BREADTH 2: THERMAL QUALITY
- V. CONCLUSION
- IV. ANALYSIS 3: SIPS
 - Implementation
 - **RESULTS/RECOMMENDATIONS**
- **OPERATIONS AND MAINTENANCE** V.
 - BUILDING COMPATIBILITY
 - CONCLUSION AND


RECOMMENDATIONS

- VI. LESSONES LEARNED
- VII. ACKNOWLEDGEMENTS



ADDITIONAL INFORMATION

Fairfax, VA

ANTHONY GRAB | CONSTRUCTION MANAGEMENT

